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Full-Wave Analysis of the Excitation of
Magnetostatic-Surface Waves by a
Semi-Infinite Microstrip
Transducer—T heory
and Experiment

Manuel J. Freire, Ricardo Marqués, Member, |EEE, and Francisco Medina, Senior Member, IEEE

Abstract—T his paper presents a new method for the complete
characterization of the radiation of magnetostatic-surface waves
in microstrip transmission lines with longitudinal magnetization.
This method is based on the analysis of the excitation of leaky
modes in microstrip lines and provides both the propagation con-
stant and the complex impedance of the microstrip. From these
quantities, theradiation resistance and other relevant characteris-
tics of theline can be directly obtained.

Index Terms—Characteristic impedance,
magnetostatic-surface wave (M SSW).

leaky mode,

I. INTRODUCTION

ICROSTRIP MAGNETOSTATIC-SURFACE-WAVE

(MSSW) transducers are useful in the design of delay
lines, filters, and other devices [1], [2]. Although practical
transducers have finite length, the analysis of the radiation of
MSSW in microstrip lines of infinite length is usually consid-
ered as a reasonable approach to practical devices[3]-{8].

One of the main problemsin the design of microstrip-excited
MSSW transducers is the characterization of the radiation effi-
ciency, i.e., the calculation of the input or radiation impedance.
This problem has been solved in the past by calculating the
average power carried away by the MSSW excited by the mi-
crostrip through the Poynting vector associated with the M SSW
[3]5], [8]- The calculation of the Poynting vector requires the
computation of theM SSW fields. Toreach thisgoal, both amag-
netostatic approach [3], [4] and afull-waveanaysis[5], [8] have
been reported in the literature. In [3] and [4], auniform surface
current density is assumed on the strip and analytical expres-
sions are obtained for the MSSW fields. In [8], the fields are
analytically calculated after the surface current density is nu-
merically computed by means of a full-wave analysis using the
Gaerkin method.

In this paper, we develop a method to obtain the complex
propagation constant and the complex characteristic impedance
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Fig. 1. (a) Two semi-infinite microstrip lines fed by a 1-V delta-gap source
applied at = = 0. (b) Cross section of the microstrip line. (c) Equivalent circuit.

of an infinitely long microstrip MSSW transducer. From these
parameters, the radiation efficiency and other relevant quanti-
ties of the infinite and/or the finite length transducers are then
obtained. No direct computation of the MSSW fieldsisrequired
inthisanalysis, which isasignificant advantage of the proposed
method.

The following sections describe the guidelines of the method
of analysis. Then, some numerical and experimental results are
shown. Finaly, concluding remarks are presented.

II. METHOD OF ANALYSIS

The method reported in [9] and [10] to analyze the excitation
of leaky modesin printed-circuit linesisapplied hereto the anal -
ysisof themode propagating along aY |G-loaded longitudinally
magnetized microstrip lineradiating M SSWs. Thismethod con-
sists of the full-wave analysis of the current excited in a pair
of semi-infinite microstrip lines fed by a 1-V delta-gap source.
Fig. 1(a) and (b) showsthe structure under study. Fig. 1(c) shows
the equivalent circuit of the structure.

Assuming that E&2P(z, z) isthe electric field imposed by the
delta-gap voltage source, the surface current density on the con-
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ductor strip J; can be obtained after solving the following elec-
tric field integral equation (EFIE) [10]:

ES*P(x,2) = / Gz, z,2',2') - Js(2', 2y dx' d2 (1)
strip

where G(z, 2,2, 7') is the spatial dyadic Green's function,
with the variables =, " extended from —w/2 to w/2 (w stands
for the strip width) and z, 2’ from —oc to oc. The electric field
in the gap is modeled as

B (r,2) = 8(2)2, o< 5 @
where §(z) is the Dirac delta function. The EFIE (1) is solved
using the Gal erkin method by expanding both thetransverse and
longitudinal components of the surface current density, J,, and
J., into a general set of complete domain basis functions as
follows:

Iz, 2) = Tz, 2)x + J.(z,2)Z 3)

Ja(,2) = Fon(@)lan(2),

n=0

a=uz,z. (@]

The I, »(z) functions are the unknown coefficients in the
Galerkin problem and the F, ,(x) functions are the basis
functions, which are given by

2
Fon(x) = %JUn(Qx/w) 1-— <25> 5)

F) = 2 Tu(2e/w)
e iy

that is, first (7,,) and second kind (1/,,) normalized Chebyshev
polynomials weighted by the proper edge condition [7], [8]. It
must be noted that theintegration of the F, ,,(x) functionsturns
out to be

(6)

w/2
/ F. o (z)dx = 60 @
—w/2

where 6, isthe Kronecker delta. Taking this into account, the
current I(z) on the strip is given by the coefficient related to the
zeroth-order basis functions for .J., that is, I. o(z). The EFIE
(1) is transformed into the Fourier domain and, after applying
the Galerkin method, the following matrix equation is obtained
[10]:

Z F(rt}:nl):(a:n)(kz) . fayn(kZ) = 6,@,z6nl,07

a=uz,2 P=x2 mn=01...,N. (8)

The fa,n(kz) function in (8) accounts for the Fourier trans-
form of the unknown coefficients in (4), s .60 ae the
Kronecker deltas that constitute the independent elements, and
I'(3,m),(a,n) (k=) are the matrix elements given by

1 I # O\
Cam o) = g [ dblFon ()
ke

Goalka k) Fon(ke) (9)

Im(k,) 4

Ch
Re(k,)

Fig. 2. Typical integration path in the complex k. plane. The crosses indicate
the location of the poles of the SDGF.

where Fs ., (k,) and F,, (k) arethe Fourier transform of the
basis functions, G g, (k=, k. ) is the a-component of the spec-
tral dyadic Green's function (SDGF), and C},, is aproper inte-
gration path in the complex &,.-plane. The SDGF has polesin
the complex k,,-plane and the integration path C;,, has to suit-
ably detour around these poles[7]-{11]. The matrix equationin
(8) is solved following the Kramer’ srule, and the Fourier trans-
form of the current I(k. ) isfinally expressed as

= = Det [F]z 0
Ik)=1Iolk,) = ———— 10
( ~) ~,0( ~) Det[F] ( )
whereDet [I'] isthe determinant of the 2V x 2NV Galerkin matrix
(9) and Det|[I']. o isthe determinant of the matrix obtained after
substituting the column (3, m) = (z, 0) of the matrix (9) by the
column of independent termsin (8).

A. Computation of the Propagation Constant

The I(k.) function has polesin the complex k. -plane which
correspond to the propagation constants of the modes propa
gating along the microstrip [10]. These poles are calculated by
searching for the zeros of the denominator in (10). Searching
for the zeros in a structure as that shown in Fig. 1 at frequen-
ciesinsidethe MSSW region providesapair of complex values,
tk. =B F ja (B > 0,« > 0), 3 being the phase constant of
the mode propagating along the strip and « being the attenua-
tion constant. These modal solutionscorrespondtoaquasi-TEM
mode on the microstrip ling, which radiates MSSWs into the
Y1G dlab [6], and here are obtained using the integration path,
Cy, , asdepicted in Fig. 2.

The poles in the complex %, plane are located in the second
and fourth quadrants, very close to the real axis. The path
is deformed around this axis far from the poles to accelerate
the convergence of the integration. Leaky modes in isotropic
printed-circuit lines have modal solutions associated with poles
that are located in the first and third quadrants in the complex
k.. plane (this means that leaky mode fields grow exponentially
along the z direction [11]). Since the poles in the k, plane
associated with themode propagating along the Y | G-loaded line
arelocated in the second and fourth quadrants, the fields of this
mode decay exponentially along the x direction, the imaginary
part of these poles accounting for the attenuation constant in
this direction. This behavior is typical of complex modes [12].
However, the SDGF poles are so close to the real axis that the
exponential decay in the x direction is very slow. Therefore,
the reported modes would be better characterized as backward
leaky modes, that is, leaky modes which radiate laterally and
backward with respect to the direction of propagation of the
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C

Fig. 3. Equivaent circuit in the transmission-line model of the semi-infinite
Y1G-loaded microstrip line. L: inductance; C': capacitance; R.,.: radiation
resistance.

mode. This fact was aready reported in [8], where it is shown
that the power flux associated with the MSSW forms an angle
with the strip direction greater than 90°.

B. Computation of the Characteristic Impedance and
Radiation Resistance

Asshownin [9] and [10], the residue contribution to I (k. ) at
the polelocation givenby k. = 3 — ja inthe complex k. plane
provides the complex amplitude of the current associated with
the mode of propagation constant %.. Following this idea, the
characteristic impedance of the considered microstrip mode can
be readily computed. The aforementioned residue contribution
is expressed as

I() = —jRes| I(k. = # = jo)] exp (=j(B — jo)2). (D)

The residue is computed with a low numerical effort by inte-
grating (10) around k., = /3 — ja using a Gauss—Chebyshev
quadrature, the obtained current being a complex number in
general. In Fig. 1(a), the voltage imposed by the source is ap-
plied between points A and B being thisvoltage Vyg = 1 V.
The impedance seen between the two terminals A and B of the
delta-gap source 7 4 g is defined as the ratio of the voltage be-
tween these points and the current at z = 0, i.e,,

o Vap Vap
AB = 7 0 _. = BNE
(z = —jRes [I (ke=p~ Ja)}

(12)

Fig. 1(c) shows acircuit model for the structure of Fig. 1(a). In
thiscircuit model, two loads corresponding to the complex char-
acteristic impedance Z, of the two semi-infinite lines are series
connected between terminals A and B of the source. Therefore,
the characteristic impedance Z, isthen given by one half of the
impedance between A and B as

Z V.
Zo = AB _ _VaB

2 —2jRes[I(k. = — ja)]

(13)

Thus, once the propagation constant k. = 3 — j« is obtained,
the computation of the residue of I(k. = 3 — ja) providesthe
characteristic impedance of the line.

The radiation resistance per unit length of theline R,,, is ob-
tained from 7, and k., using the transmission line model shown
in Fig. 3, the final result being

R, = —Im(Zyk.). 14
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Fig. 4. Radiation resistance R,,, versus frequency. The structure is as shown
inFig. 1 with thefollowing structural parameters: w = 178 um, ! = 2.28 mm,
hy = 254 pm, hy = 6.25 pum, hy — o0; &1 = 10egg,e2 = 10gg,63 =
15¢0; Hy = 650 Oe, 47 M, = 1750 G, AH = 0 Oe.
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Fig. 5. Propagation constant versus frequency for the structure of Fig. 4.
Results are shown for both uniform and nonuniform (Chebyshev polynomials)
current distribution.

1. NUMERICAL RESULTS
A. Theoretical Results

In Fig. 4, our results for the radiation resistance of an infi-
nite microstrip M SSW transducer are shown and compared with
those obtained in [3]. The computation of the current has been
carried out using two different choices for the basis functions.
The first one consists of taking the basis functions as shown in
(5) and (6), including both even and odd Chebyshev polyno-
mials (N = 6 in (4) leads to the convergence of the results).
The second choice consists of taking

F,.(x)=0, n>0 (15)
1/ w, n=0
Fon = {0, n>0 (16)

i.e.,, auniform current isimposed on the strip, asis assumed in
[3]. The curvesin Fig. 4 show that our computations for the ra-
diation resistance R2,,, are in agreement with those obtained in
[3] following a quite different method when the same hypoth-
esis about the distribution of the current on the strip is made.
Figs. 5 and 6 show our results for the propagation constant and
the complex characteristicimpedance, respectively, for the same
microstrip MSSW transducer of Fig. 4.

A very important conclusion concerning the modeling
of practical MSSW transducers must be highlighted from
these figures. Practical transducers have finite length and are
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Fig. 6. Real and imaginary parts of the characteristic impedance of the
structure of Fig. 4. Results are shown for both uniform and nonuniform
(Chebyshev polynomials) current distribution.

Fig. 7. Sketch of the microstrip-circuit line and picture of the experimental
setup. Dimensions of the YIG sample: d = 5 cm, ! = 4 mm. Strip width:
w = 1.43 mm.

short-circuited at the end [2]. Following the conventional circuit
theory, the input impedance of these devicesis thus given by

Zin = jZotan(k,l) a7
where [ is the length of the transducer. A usua approxima-
tion [3]-{5], [8] consists of assuming that |k.I] < 1, so that
Zotan(k, 1) ~ Zok.l. Thecurvesin Figs. 5 and 6 show that this
assumption can be hardly justified except for very short trans-
ducers (I < 1 mm). Similar results leading to this conclusion
were systematically obtained by the authors of the present paper
for many other Y1G-loaded microstrip configurations and static
bias magnetic fields. A similar conclusion was also previously
reported in [6].

B. Comparison With Experimental Results

For the purpose of verifying input impedance computations
using expression (13) [and (17)], measurements have been
carried out with the experimental setup shown in Fig. 7.
In practical devices, the input microstrip transducer must be
accompanied by an output microstrip receiver. However, the
simpler microstrip-circuit line shown in Fig. 7 having a single-
input microstrip transducer fills our purpose. Input impedances
for a YIG-loaded short-circuited line of finite length I equal
to 4 mm has been measured using the HP 8510 B automatic
network anayzer. The input line is a 50-2 line built on a
0.49-mm-thick dielectric substrate, which imposes a strip width
of w = 1.43 mm to get a 50-C) characteristic impedance. The
same strip width is chosen for the YI1G-loaded line section
(transducer) in order to minimize transition effects. Figs. 8 and
9 shows input resistance and input reactance versus frequency.
The theoretical results have been obtained from (13) and (17).
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Fig. 8. Input resistance versus frequency. The structure is as shown in Fig. 1
with the following structural parameters: w = 1.43 mm,! = 4 mm, h; =
0.49 mm, hy =40 pm, hz = 0.5 mm; gy = 2.43,e5 = 10,65 = 15; Hy =
1000 Oe, 47 M, = 1880 G, AH = 0.6 Oe.
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Fig. 9. Input reactance versus frequency for the structure of Fig. 8.

0 0

2 \ . ’/':‘/. ~=" T e
—~ e
g 4 vl
= [ ./ ¢ Experiment
‘;J‘ 6 \./ —— Theory

-8

-0 L= :

31 32 33 34 35 36 37 38 39 4
Freq (GHz)

Fig. 10. Returnlossin decibels. The structure is as shown in Fig. 1 with the
following structural parameters: w = 1.43 mm,! = 4 mm, h; = 0.49 mm,
he =40 pm, hy = 0.5 mm; e; = 2.43,e5 = 10,65 = 15; Hy = 500 Oe,
4rM, = 1880 G.

The computation of the current has been carried out using two
choicesfor the basis functionsin the same way asin Fig. 4, that
is, imposing auniform current on the strip by means of (15) and
(16) and using the basis functions given in (5) and (6) including
both even and odd Chebyshev polynomials [with V = 6 in
(4)]. The theoretical results corresponding to the expansion
into Chebyshev polynomials show a good agreement with the
experimental results, which indicates that the expansion into
Chebyshev polynomials seems a more realistic hypothesis than
assuming a uniform current density on the strip.

Finally, Fig. 10 shows the return loss for the structure ana-
lyzedinFigs. 8 and 9 for adifferent bias magnetic field. A good
agreement is found again between theoretical and experimental
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results. Small differences can be attributed to the finite dimen-
sions of the YIG dab [13] and higher order modes generated at
the transition between the Y1G-loaded section and the dielec-
tric-loaded section.

IV. CONCLUSION

A new method for the complete characterization of infinitely
long microstrip MSSW transducers is presented. This method
is based on the analysis of the excitation of lesky modesin mi-
crostrip lines. A significant advantage of this method is that no
explicit computation of fields and Poynting vector are required
to obtain the line impedance and/or the radiation resistance of
thetransducer. The method can be applied to obtain theradiation
efficiency of practical transducers of finite length by using con-
ventional transmission-line theory. A good agreement with pre-
vious theoretical results and with experiments has been found.
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